Modular organization of balance control following perturbations during walking.
نویسندگان
چکیده
Balance recovery during walking requires complex sensory-motor integration. Mechanisms to avoid falls are active concomitantly with human locomotion motor patterns. It has been suggested that gait can be described by a set of motor modules (synergies), but little is known on the modularity of gait during recovery of balance due to unexpected slips. Our hypothesis was that muscular activation during reactive recovery of balance during gait has a modular organization. The aim of the study was to verify this hypothesis when perturbations were delivered in different directions. Eight healthy men walked on a 7-m walkway, which had a moveable force platform embedded in the middle. Subjects experienced unperturbed walking as well as perturbations delivered in the sagittal (forward and backward) and frontal (leftward and rightward) planes. Bilateral full-body kinematics and surface electromyography (EMG) from lower limbs, trunk, and neck were recorded during walking. Synergies and activation signals were extracted from surface EMG signals. Four modules were sufficient to explain the unperturbed gait and the gait perturbed in any of the perturbation directions. Moreover, three of four modules extracted from the unperturbed gait were the same for gait perturbed forward, leftward, and rightward (similarity in synergies = 0.94 ± 0.03). On the other hand, the activation signals were different between unperturbed and perturbed gait (average correlation coefficient = 0.55 ± 0.16). These strategies to recover balance were robust across subjects. In conclusion, changes in lower limb and trunk kinematics provoked by perturbations were reflected in minimal adjustments in the muscular modular organization of walking, with three of four modules preserved from normal walking. Conversely, the activation signals were all substantially influenced by the perturbations, being the result of integration of afferent information and supraspinal control.
منابع مشابه
Common muscle synergies for balance and walking
Little is known about the integration of neural mechanisms for balance and locomotion. Muscle synergies have been studied independently in standing balance and walking, but not compared. Here, we hypothesized that reactive balance and walking are mediated by a common set of lower-limb muscle synergies. In humans, we examined muscle activity during multidirectional support-surface perturbations ...
متن کاملReconstructing human push recovery reactions using a three dimensional under-actuated bipedal robot
This paper presents the ability of hybrid zero dynamics (HZD) feedback control method to reproduce human like movements for walking push recovery of an under-actuated 3D biped model. The balance recovery controller is implemented on a three-dimensional under-actuated bipedal model subjected to a push disturbance. The biped robot model is considered as a hybrid system with eight degrees of freed...
متن کاملDirection-dependent control of balance during walking and standing.
Human walking has previously been described as "controlled falling." Some computational models, however, suggest that gait may also have self-stabilizing aspects requiring little CNS control. The fore-aft component of walking may even be passively stable from step to step, whereas lateral motion may be unstable and require motor control for balance, as through active foot placement. If this is ...
متن کاملAbsence of postural muscle synergies for balance following spinal cord transection 5 6 7
30 31 Although cats that have been spinalized can also be trained to stand and step with full 32 weight support, directionally-appropriate long-latency responses to perturbations are impaired, 33 suggesting that these behaviors are mediated by distinct neural mechanisms. However, it remains 34 unclear whether these responses reflect an attenuated postural response using the appropriate 35 muscu...
متن کاملUnexpected perturbations training improves balance control and voluntary stepping times in older adults - a double blind randomized control trial
BACKGROUND Falls are common among elderly, most of them occur while slipping or tripping during walking. We aimed to explore whether a training program that incorporates unexpected loss of balance during walking able to improve risk factors for falls. METHODS In a double-blind randomized controlled trial 53 community dwelling older adults (age 80.1±5.6 years), were recruited and randomly allo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 108 7 شماره
صفحات -
تاریخ انتشار 2012